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OPTIMAL DISCOUNTED LINEAR CONTROL OF THE
WIENER PROCESS®

loannis Karatzas

ABSTRACT

The following stochastic control problem is considered: to

minimize the discounted expected total cost

J(x;u) = E I e'atIO(xt) B |ut(x)|]dt
0

subject to dxt = ut(x)dt + d't' Xg * X; |uJ e ks (wt) a Wiener
process, a > 0. All bounded by unity, measurable and nonanticipative
functionals ut(x) of the state process (xt) are admissible as

controls. It is proved that the optimal law is of the form

®
ut(x) = -1, X, > b
o ov |th <bH
= 1, xt < -b

for some switching point b 0, characterized in terms of the

function ¢ (.) through a transcendental equation.
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,s0 as to minimize the expected discounted total cost. .
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1. INTRODUCTION AND SUMMARY

= We consider the problem of discounted optimal control of the
Wiener process_ﬁ+uf; t > 0%) transformed by the action of a non-
anticipative control into the “state process?ﬂﬁixt;-t > 0}+ The
latter satisfies the “'state equation'p-vdﬁ = ut(x)dt + dut, t >0;
X0 -+ on an appropriate probability space.-

“>There is a cost 4lxy)s per unit time for being in the wrong

AJ'ﬂ*Q‘ N

state w&f; Vh?f! —Qt—t;.is an even, uniformly convex function on the

reals whose second derivative is decreasing with distance from the

origin. There is also a cost-+«?¥3 per unit time for using the

~

A
control,.uvg, Both costs are discounted in time by the factor

e'at, a >~05>and the control action is limited:g“luil S 1y a.se

*The controller has to choose a law _n14545)as a nonanticipative,

measurable functional of the state process with values 4m [-1,1],

’ v@.o‘ (l.'o

-

The "physically obvious'" law is to push with full force (to

the right direction) if x is outside a certain neighbourhood

t

of the origin, while to exert no control at all if x is in this

t
neighbourhood:
®
ut(x) = -1, X, > b
(1.1) = 0, |xt|: b
- 1' xt< -b

Optimality of this law is proved and the cutoff point b
separating the active region from the dead zone is characterized
¢()

in terms of the function through the transcendental
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equation (3.11). Existence and uniqueness of a solution to the
above equation is proved by making use of the aforementioned properties
of ¢(-). It is an interesting problem to relax these assumptions
in order to allow cost functions with general polynomial or even
exponential ﬁrowth.
General existence results for the problem of discounted
stochastic control were given by Kushner [1967]. Beneg, Shepp
and Witsenhausen [1979) proved optimality of the bang-bang law in
the case of a quadratic running cost on the state and no cost on

the control. They also treated the finite-fuel problem with a

discounted cost criterion.

3 ~ In the present paper we proceed by formulating the control
problem,in Sectien-2.> The Bellman equation of dynamic programming
is explicitly solved_in Sectien—P and the candidate for the optimal
law -*——in—~3Pis discerned from the properties of the solution.
Optimality of the candidate is proved, in Section 4.

K.’f’\\\

KEY WORDS AND PHRASES: Discounted stochastic control, Bellman

equation, dead-zone controllers




THE STOCHASTIC CONTROL PROBLEM

Consider as basic probability space Q the space CaR’) of

continuous, real-valued functions on R' and let F,t>0

denote the o-field generated by ({x i s < t}, x € Q. Consider

also the o-field .« generated by the subsets M of R’ x C(R’)

with the property that each t-section Mt of M belongs to j{

and each x-section Mx of M is Lebesgue measurable. A function
g defined on R x COR‘) is _4-measurable if and only if g(t,*)
is 9;-mcasurable for any t >0 and g(-,x) is Lebesgue

measurable, for any x € CGR‘).

Definition 2.1: Let the control measure space be the compact inter-

val [-1,1] with its Borel sets. An admissible nonanticipative

control u is a measurable function u: (R' x C(R*)) = [-1,1].

The class of all such controls is denoted by %. For any con-
trol law u € % and any x € R we can construct by means of the
Girsanov theorem a probability space (@, #,P) and a pair of
stochastic processes (xt.wt) on it, such that {wei t 2 0} is

a Wiener process with respect to P and the stochastic differential

equation
(2.1) dxt = ut(x)dt + dwt, t >0
(2.2) . Xg = X

is satisfied. Such a "weak solution" of (2.1) is known to be unique
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in the sense of the probability law; see, for instance, Liptser
and Shiryayev [1977].
Consider now a nonnegative function ¢ on the reals which

is even, sz). uniformly convex in the sense that

(2.3) 0<k<o(x) <K, all x €R

for some positive constants k,K, with ¢(x) decreasing on x > 0.

The control problem consists in finding a law u* € % that

minimizes the "discounted" expected total cost

(2.4) Jxiu) = E [ e (u 0] v eix))ae
0

of starting at place x and using control u, over all u € %,
x € R. Here E denotes expectation with respect to the
probability measure P, a > 0 is the "discount factor", () is

the running cost on the state and |-| is the cost of control.




3. THE EQUATION OF DYNAMIC PROGRAMMING

The method proceeds by constructing a solution to the Bellman
equation of dynamic programming which satisfies certain growth

and symmetry conditions. Introduce the function

A
P

(3.1) a(p) = min (|u]|+pu) = 0 , :lpl
lul <1

Vv
e
.

.

=1- |pl, Ipl
The formal Bellman equation for this problem is

(3.2) av = % Y a(vx) + o(x), x € R.

We are looking for a positive number b and an even solution of

(3.2). v(x] = O(xz) as [x| - =, such that v_(b) = 1 and
X

(3.3) av =3 v+ o), 0 <v(x)<1 on 0<xc<b J

(3.4) ay = % e 1 - " $(x), vx(x) » 3 on x > b. J

A particular solution to the equation in (3.3) is given by
the cost of "doing nothing" all the time. Indeed, consider the
"naive'" control law ut(x) £ 0. The corresponding cost is

L
p(x) = E f e'“‘o(xowt)dt
0
and it becomes an easy exercise in Laplace transforms to verify

that




X
(5.5 a) = L. E""Z—;j 0(2)e? Pdz + ﬂ(z)e'z"ﬂ{',
/X X

-

This function is even, has the growth of ¢(-) as |x| - « and
satisfies the equation in (3.3) as is easily verified. To get

the general solution of the latter, we add to p(x) a solution

A ex/Zi L e-x/ZE
1 2
of the homogeneous av = ; Vix® Since v(+) has to be even, and
consequently vx(O) = 0, Al = AZ = % . 90

(3.6) v(x) = A cosh(x/2a) ¢ p(x), on 0 < x < b.

Condition vx(b) = 1 then implies

(3.7) A e L AR
/2a.sinh(bv2a)

Similarly, a particular solution to (3.4) is obtained by
considering the cost corresponding to the naive law ut(x) = -1

of pushing with full force to the left all the time:

a(x) % E Joe'°‘(1 ¢ 9 (x-tew,))de

and is easily verified that, if g9 /I+% - 1,
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(3.8) q(x) = 5 + I_TB E X [‘.Q(z)eﬁldz e( )x IxO(z)e ( ‘B)zdz]'

solves the equation in (3.4) and has the growth of ¢(-) as |x]| + =.
To get the general solution of (3.4) one has to add to q(x) the

general solution

- Bx (2+B8)x

Be + Ble

of the corresponding homogeneous equation av = % ¥ (note

that 2 + B and -8 are the roots of the characteristic polynomial

sZ - 2s - 2a), The growth condition implies Bl = (0, so
- BX ,

(3.9) v(x) = Be + q(x), on x> b,

where

(3.10) B = ﬂli%lLl P

because of vx(b) = 1. Matching the values of v(:) from the two

sides at x = b gives the equation for the switching point b:

(3.11)  tanh(b/Za) = - - p'(b)-1

/LRIy qm) - pv)

p(-) and q(+) being the functions in (3.5), (3.8).
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Proposition 3.1.

equation (3.11).

Proof. A lot of simple calculus shows that p'ix) ~ 1 = é

and ﬁiii%—l—l + q(x) - p(x) =

M I " (z)e
X

mz(x), where

31 'éjun

/2a .

P -

m, (x) do'(x) -a +

- X s
. g RiE [ ¢ (z)e 'Zudz}

i

m,(X) é 9'(X) - & ¢ c(z.e‘x I @u(z)c'(z‘ﬁ)zdz &
3 X

5 - oJdP = X
T [are e v o /5 |
X o
o

<
<o that equation (3.11) becomes: tanh(xv/2d) = —%3 m(x),

ml(x)

a
m(x) - ‘iz‘—(iT .

There is exactly one positive solution b

to
ml(x)
0"(z)e2/§5dz

Note that ml(O) = -a < 0 and that ml(x) is strictly

increasing to infinity as x ¢ =, since

X

my(x) = //g.[cx/fa I 0"(z)e-z/fadz . e"‘ﬁa I " (z2)e
x

>k >0.

zJTEdz

Thus, there e'xists a unique number bl > 0, such that nl(bl) = 0.

On the other hand, since B < v2a < 2 + B, ml(x) > m,(x)

and




mé(x) = % Eron(z)e'(z‘e) (z-x)dl + r(on(z_x) 3 on(z’x))e‘z&-& da : k>0
X 0

on x > 0, by the assumption of decreasing curvature. So there

exists a unique number b2 > bl' such that mz(bz) = 0. Now the
function m(x) 1is negative on (O,bl) and (bz,ﬁ), is equal to
zero at bl' and increases montonically to infinity'on (bl'bz)
as x * bZ’

Consequently, there exists a unique b € (bx'bz) such that:

o
v2ia

tanh(bv/231) = - m(b), q.e.d.

Once b has been thus determined, one constructs the function

{3.12) v(x) = R S ) cosh(xv/Za) + p(x) ; 0 <x<b
YIi.sinh(by/Ia)

2 9"bz - 1 e’B(X'b) . q(x) : x >b

= v(-x) . x <0

in accordance with (3.6), (3.7), (3.9), (3.10), where p(x) and
q(x) are again the functions in (3.5) and (3.8). The function
v(-) in (3.12) satisfies equations (3.3) and (3.4) on (a,b)
and (b,») respectively, as well as vx(b) = 1, by construction,
and v(b,) = v(b_), by (3.11).

It remains to prove that v(-) solves the Bellman equation

£3:2)s Suffi}es to prove: 0 < vx(x) <1, on [0,b] and




1, on [b,»), while in turn this is an easy corollary

vx(x) >

of convexity:

Proposition 3.2. The function in (3.12) is convex: v__(x) 2 0,

x € R.

Proof. A bit of algebra shows that, on 0 < x < b, .

é Vx (X) = av(x) - #(x) 2 ;; {E‘(b) . o(2*B)D I:on(z)e'(Z‘B)Z%E]

¢ (@px) - #(x)) - @p(d) - 2 (b)).

Note that: ap'(x) - ¢'(x) = % [0(0"(20x) - 0"(z-x))e'2/za < 0, by

the decreasing second derivative assumption. Therefore, ap(x) - ¢(x)

> ap(b) - #(b) and

(3.13) v, (x) g BX21) 0 <xc<b.

a ’ - -

By continuity of vxx('); vxx(x) >0 on (b,bse), €>0 sufficiently
small. On the other hand, if w =

BN wa - 2aw = -2¢"(x) < 0, on (b,=).
By the maximum principle (Friedman [1964), p. 53, Theorem 18),
Vxx(') cannot have a negative minimum on (b,»). However, on

this interval,
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V() = 8@ ®)-1e O 4 qre) 2 Bt ®)-ne BEP) L K

since

X o

a X
qQ"(x) = T%g [E(Z*B)x I 0”(z)e'(z’e)zdz . o Bx I 0"(z)eszd£].

Therefore, v  (x) > 0 for x sufficiently large, so if vxx(i) <0,

(+) would have a negative minimum there,

some Xx € (b,=), ¥os

contradicting the maximum principle. Therefore vxx(x) >0,

also on [b+e, =) q.e.d.

Special Case: In the special case ¢(x) = xz, we have

L]

" uzouoz
e et

a

=lro

| px) = %o b, q) = X -
a

ml(x) = x - ; . mz(x) - x - (% + é). so ; < b ¢ ; + é . It can

be shown that vxx(x) > Eliiﬁl > 0, any x € R, in this case.

-
a

JIU— e a e o g o S e et
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4. THE OPTIMAL LAW

Let us prove that v(-) 1is the value function of the control
problem, i.e. an (attainable) lower bound on the expected discounted
total cost, and try to discern the law that achicves this infimum.
Consider any admissible law u € % along with the corresponding
state process (x:). solving equation (2.1)-(2.2) in the weak sense.

We introduce the process
.U u, -at
(4.1) \t ) v(xt)e !
and note that
. u T 5 2 ; U
Ev(x,) < Ev(|x]et+lw_|) = 0(t%) as t + =« so lim EV_ = O,
t’ = t o

any @ > 0, x € R, u € %

Applying Ito's rule to (4.1) we get

T

-a
¢
0

T T
. u - -at u > u & -at u
?(xy))de foc (Jug (x )+ ¢ (xy))dt Ioe v (xg)dw, .

t u 1 u u
(rav(xy) ¢ 3 v (x) + uv (xg) ¢ lu | +

v¥ = v(x) ¢ I

Since v(-) satisfies equation (3.2), the first integrand is
nonnegative. Taking expectations and then passing to the limit

as T - = we get

(4.2) J(x;u) = E Ioe.ut(lut(xuﬂ B Q(x‘t‘))dt > v(x); u €% x €ER.
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Consider now the law u" € %
-1, x. > b
o t
{1.1) up (x) = 0, |xt| <b
= Xy <-b
obtained through the minimization: lu:(x)l * vx(xt)-u:(x) = a(vx(xt)).'

The corresponding state process (x:) satisfies

2 LI .
(4.4) dx, = u (x )dt ¢ dwt. t >0

m A

bl
(=1 J

onan appropriate probability space. Although no explicit use is
made of this fact in the present context, we mention that (4.4)

is strongly solvable for xf as a causal functional of w_
because u:(x) in (4.3) is instantancous, bounded and measurable;

see Zvonkin [1974]. Then the inequalities above hold as equalities,

and

(4.5) J(x;u*) = v(x); x €R.

From (4.2), (4.5), v(x) 1is a lower bound on the performance (2.4),
and is achieved by the process (x:). In other words, u:(x) is

optimal.

e ———— s s
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